Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
5.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2115955

ABSTRACT

Recently, a recombinant SARS-CoV-2 lineage, XD, emerged that harbors a spike gene that is largely derived from the Omicron variant BA.1 in the genetic background of the Delta variant. This finding raised concerns that the recombinant virus might exhibit altered biological properties as compared to the parental viruses and might pose an elevated threat to human health. Here, using pseudotyped particles, we show that ACE2 binding and cell tropism of XD mimics that of BA.1. Further, XD and BA.1 displayed comparable sensitivity to neutralization by antibodies induced upon vaccination with BNT162b2/Comirnaty (BNT) or BNT vaccination followed by breakthrough infection. Our findings reveal important biological commonalities between XD and Omicron BA.1 host cell entry and its inhibition by antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/genetics , Viral Envelope Proteins/genetics , BNT162 Vaccine , Membrane Glycoproteins/metabolism
7.
Vaccines (Basel) ; 10(5)2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1847409

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic is ongoing, and new variants of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are emerging, vaccines are needed to protect individuals at high risk of complications and to potentially control disease outbreaks by herd immunity. After SARS-CoV-2 vaccination, antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) presenting with a pulmonary hemorrhage has been described. Previous studies suggested that monocytes upregulate major histocompatibility complex (MHC) II cell surface receptor human leukocyte antigen receptor (HLA-DR) molecules in granulomatosis with polyangiitis (GPA) patients with proteinase 3 (PR3)- and myeloperoxidase (MPO)-ANCA seropositivity. Here, we present a case of new-onset AAV after booster vaccination with the Pfizer-BioNTech SARS-CoV-2 mRNA vaccine. Moreover, we provide evidence that the majority of monocytes express HLA-DR in AAV after SARS-CoV-2 booster vaccination. It is possible that the enhanced immune response after booster vaccination and presence of HLA-DR+ monocytes could be responsible for triggering the production of the observed MPO- and PR3-ANCA autoantibodies. Additionally, we conducted a systematic review of de novo AAV after SARS-CoV-2 vaccination describing their clinical manifestations in temporal association with SARS-CoV-2 vaccination, ANCA subtype, and treatment regimens. In light of a hundred million individuals being booster vaccinated for SARS-CoV-2 worldwide, a potential causal association with AAV may result in a considerable subset of cases with potential severe complications.

8.
Front Immunol ; 13: 868133, 2022.
Article in English | MEDLINE | ID: covidwho-1817945

ABSTRACT

While the global pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is still ongoing and new virus variants are emerging, there is a universal need for vaccines to protect individuals from severe complications and ideally control the pandemic by enabling herd immunity. Several vaccines against SARS-CoV-2 have been approved and are widely used to stem the recurring waves of coronavirus disease 2019 (COVID-19). Post-marketing surveillance is essential to record even rare safety issues related to these new vaccines. Among these issues, several autoimmune phenomena have been recorded in temporal association with and feasibly triggered by a vaccination. Acquired haemophilia A (AHA) is a rare condition characterized by new-onset haemorrhagic diathesis caused by an inhibitor of blood clotting factor VIII (FVIII), often in the elderly and most commonly associated with autoimmune or malignant disease. There have been a small number of AHA cases triggered by vaccinations, including those against SARS-CoV-2. We report the first case of AHA in temporal association with an mRNA-1273 booster vaccination. The diagnosis was made promptly, and the patient received appropriate care including immunosuppression using glucocorticoids, cyclophosphamide (CYC) and rituximab (RTX). The haemorrhage ceased after escalation of treatment, and the patient is recovering. Concurrent malignancy was initially ruled out using a wide scope of diagnostic tests, but pleomorphic dermal sarcoma (PDS) of the forehead occurred after initiation of specific AHA immunosuppressive treatment. Since large vaccination programs are ongoing worldwide and potential adverse events during post-marketing surveillance have been reported following vaccination against SARS-CoV-2, this case illustrates challenges in rare events occurring in association with SARS-CoV-2 vaccination and to proof a causal relationship. Therefore, there is an urgent need for reporting any events in association with SARS-CoV-2 vaccination, but also a crucial discussion about possible concurrent triggers and follow-up information about individual patients.


Subject(s)
COVID-19 , Hemophilia A , Sarcoma , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Aged , COVID-19 Vaccines/adverse effects , Hemophilia A/diagnosis , Hemophilia A/drug therapy , Humans , SARS-CoV-2 , Vaccination/adverse effects
10.
Front Immunol ; 12: 784145, 2021.
Article in English | MEDLINE | ID: covidwho-1674332

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic is ongoing and new variants of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are emerging, there is an urgent need for vaccines to protect individuals at high risk for complications and to potentially control disease outbreaks by herd immunity. Surveillance of rare safety issues related to these vaccines is progressing, since more granular data emerge about adverse events of SARS-CoV-2 vaccines during post-marketing surveillance. Varicella zoster virus (VZV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) reactivation has already been reported in COVID-19 patients. In addition, adverse events after SARS-CoV-2 mRNA vaccination have also been in the context of varicella zoster virus (VZV) reactivation and directly associated with the mRNA vaccine. We present the first case of CMV reactivation and pericarditis in temporal association with SARS-CoV-2 vaccination, particularly adenovirus-based DNA vector vaccine ChAdOx1 nCoV-19 against SARS-CoV-2. After initiation of antiviral therapy with oral valganciclovir, CMV viremia disappeared and clinical symptoms rapidly improved. Since huge vaccination programs are ongoing worldwide, post-marketing surveillance systems must be in place to assess vaccine safety that is important for the detection of any events. In the context of the hundreds of millions of individuals to be vaccinated against SARS-CoV-2, a potential causal association with CMV reactivation may result in a considerable number of cases with potentially severe complications.


Subject(s)
ChAdOx1 nCoV-19/adverse effects , Cytomegalovirus/drug effects , Pericarditis/chemically induced , SARS-CoV-2/immunology , Virus Activation/drug effects , Aged , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Cytomegalovirus/physiology , Cytomegalovirus Infections/chemically induced , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Female , Humans , Pericarditis/drug therapy , Pericarditis/virology , Treatment Outcome , Valganciclovir/therapeutic use , Viremia/chemically induced , Viremia/drug therapy , Viremia/virology
11.
Front Immunol ; 12: 784989, 2021.
Article in English | MEDLINE | ID: covidwho-1603282

ABSTRACT

Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19.


Subject(s)
COVID-19/metabolism , Ceramides/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , Anti-Inflammatory Agents/therapeutic use , COVID-19/virology , Ceramides/blood , Enzyme Activation , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Fatty Acids/metabolism , Humans , Intensive Care Units , Patient Acuity , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingomyelin Phosphodiesterase/blood , Sphingomyelins/metabolism , COVID-19 Drug Treatment
12.
Biomedicines ; 9(12)2021 Dec 05.
Article in English | MEDLINE | ID: covidwho-1554994

ABSTRACT

In critically ill patients, liver dysfunction often results in coagulopathy and encephalopathy and is associated with high mortality. Extracorporeal clearance of hepatotoxic metabolites, including bilirubin and ammonia, aims to attenuate further hepatocyte damage and liver injury, resulting in decreased mortality. The efficacy of hemadsorption combined with conventional hemodialysis to eliminate bilirubin and ammonia to support the liver's excretory function in acute liver injury has been described previously. However, the optimal use of liver support systems in chronic liver dysfunction due to secondary sclerosing cholangitis in critically ill patients (SSC-CIP) has not been defined yet. We herein describe the kinetics of successful bilirubin and ammonia elimination by hemadsorption in a patient with SSC-CIP after extracorporeal membrane oxygenation (ECMO) therapy for severe acute respiratory distress syndrome (ARDS) in a patient with coronavirus disease 2019 (COVID-19). During the course of the disease, the patient developed laboratory signs of liver injury during ECMO therapy before clinically detectable jaundice or elevated bilirubin levels. A diagnosis of SSC-CIP was confirmed by endoscopic retrograde cholangiopancreatography (ERCP) based on intraductal filling defects in the intrahepatic bile ducts due to biliary casts. The patient showed stable elevations of bilirubin and ammonia levels thereafter, but presented with progressive nausea, vomiting, weakness, and exhaustion. Based on these laboratory findings, hemadsorption was combined with hemodialysis treatment and successfully eliminated bilirubin and ammonia. Moreover, direct comparison revealed that ammonia is more efficiently eliminated by hemadsorption than bilirubin levels. Clinical symptoms of nausea, vomiting, weakness, and exhaustion improved. In summary, bilirubin and ammonia were successfully eliminated by hemadsorption combined with hemodialysis treatment in SSC-CIP following ECMO therapy and severe COVID-19. This observation is particularly relevant since it has been reported that a considerable subset of critically ill patients with COVID-19 suffer from liver dysfunction associated with high mortality.

13.
Front Immunol ; 12: 753849, 2021.
Article in English | MEDLINE | ID: covidwho-1523705

ABSTRACT

Background: CD14+ monocytes present antigens to adaptive immune cells via monocytic human leukocyte antigen receptor (mHLA-DR), which is described as an immunological synapse. Reduced levels of mHLA-DR can display an acquired immune defect, which is often found in sepsis and predisposes for secondary infections and fatal outcomes. Monocytic HLA-DR expression is reliably induced by interferon- γ (IFNγ) therapy. Case Report: We report a case of multidrug-resistant superinfected COVID-19 acute respiratory distress syndrome (ARDS) on extracorporeal membrane oxygenation (ECMO) support. The resistance profiles of the detected Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii and Citrobacter freundii isolates were equipped with resistance to all four antibiotic classes including carbapenems (4MRGN) and Cefiderocol in the case of K. pneumoniae. A causal therapeutic antibiotic strategy was not available. Therefore, we measured the immune status of the patient aiming to identify a potential acquired immune deficiency. Monocyte HLA-DR expression identified by FACS analysis revealed an expression level of 34% positive monocytes and suggested severe immunosuppression. We indicated IFNγ therapy, which resulted in a rapid increase in mHLA-DR expression (96%), rapid resolution of invasive bloodstream infection, and discharge from the hospital on day 70. Discussion: Superinfection is a dangerous complication of COVID-19 pneumonia, and sepsis-induced immunosuppression is a risk factor for it. Immunosuppression is expressed by a disturbed antigen presentation of monocytes to cells of the adaptive immune system. The case presented here is remarkable as no validated antibiotic regimen existed against the detected bacterial pathogens causing bloodstream infection and severe pneumonia in a patient suffering from COVID-19 ARDS. Possible restoration of the patient's own immunity by IFNγ was a plausible option to boost the patient's immune system, eliminate the identified 4MRGNs, and allow for lung recovery. This led to the conclusion that immune status monitoring is useful in complicated COVID-19-ARDS and that concomitant IFNγ therapy may support antibiotic strategies. Conclusion: After a compromised immune system has been detected by suppressed mHLA-DR levels, the immune system can be safely reactivated by IFNγ.


Subject(s)
Bacteria/immunology , COVID-19/immunology , Drug Resistance, Multiple/immunology , HLA Antigens/immunology , Interferon-gamma/immunology , Monocytes/immunology , Respiratory Distress Syndrome/immunology , Adult , Humans , Receptors, Interferon/immunology
14.
Vaccines (Basel) ; 9(11)2021 Nov 11.
Article in English | MEDLINE | ID: covidwho-1512748

ABSTRACT

Sarcoidosis can present as an acute form or take a chronic course. One of the acute presentations is Löfgren's syndrome (LS), consisting of the symptom triad of bilateral hilar lymphadenopathy, erythema nodosum, and ankle periarthritis. In addition, there are occasional reports of sarcoid-like reactions following drug exposures. Nevertheless, reports of sarcoidosis or LS after vaccination have not been published. Here, we report two cases of de novo LS in a temporal association with different vaccines against the new coronavirus SARS-CoV-2. One patient developed the first symptoms three days after the second vaccination (first vaccination ChadOx-1, Astra Zeneca; second vaccination CX-024414, Moderna); in the second patient, symptoms started 28 days after the first vaccination (ChadOx-1, Astra Zeneca). Both patients eventually required treatment with glucocorticoids. Both patients achieved clinical improvement with treatment. In conclusion, we report the first two cases of LS shortly after SARS-CoV-2 vaccination.

15.
Front Immunol ; 12: 762006, 2021.
Article in English | MEDLINE | ID: covidwho-1477832

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic is ongoing and new variants of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are emerging, there is an urgent need for COVID-19 vaccines to control disease outbreaks by herd immunity. Surveillance of rare safety issues related to these vaccines is progressing, since more granular data emerge with regard to adverse events of COVID-19 vaccines during post-marketing surveillance. Interestingly, four cases of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) presenting with pauci-immune crescentic glomerulonephritis (GN) after COVID-19 mRNA vaccination have already been reported. We here expand our current knowledge of this rare but important association and report a case of AAV presenting with massive rhabdomyolysis and pauci-immune crescentic GN after Pfizer-BioNTech COVID-19 mRNA vaccination. As huge vaccination programs are ongoing worldwide, post-marketing surveillance systems must continue to assess vaccine safety important for the detection of any events associated with COVID-19 vaccination. This is especially relevant in complex diseases where diagnosis is often challenging, as in our patient with AAV presenting with massive rhabdomyolysis and pauci-immune crescentic GN.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , COVID-19 Vaccines/adverse effects , Glomerulonephritis/pathology , Rhabdomyolysis/pathology , Aged , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Antibodies, Antineutrophil Cytoplasmic/blood , Antibodies, Antineutrophil Cytoplasmic/immunology , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Female , Glomerulonephritis/diagnosis , Glomerulonephritis/immunology , Humans , RNA, Messenger/immunology , Rhabdomyolysis/diagnosis , Rhabdomyolysis/immunology
17.
Front Physiol ; 12: 649336, 2021.
Article in English | MEDLINE | ID: covidwho-1325555

ABSTRACT

BACKGROUND: The coronavirus disease-2019 (COVID-19) pandemic impacted healthcare services for kidney disease patients. Lockdown and social distancing were mandated worldwide, resulting in closure of medical services. The diagnosis of various kidney diseases may have been delayed during the COVID-19 pandemic because non-urgent tests and visits were postponed due to closure of medical services during the lockdown. METHODS: We here report the impact of the COVID-19 pandemic on a total number of 209 native kidney diseases requiring renal biopsy for diagnosis in a retrospective observational study from a tertiary hospital in Germany. RESULTS: The lockdown period in March and April 2020 primarily affected patients admitted to the normal medical ward with a compensatory increased rate of renal biopsies in the postlockdown phase. In addition, there was a shift toward more patients admitted with hemoglobinuria during the COVID-19 pandemic. This phenomenon of an increased number of patients with hemoglobinuria during the COVID-19 pandemic was specifically observed in a subgroup with hypertensive nephropathy requiring renal biopsy and associated with increased proteinuria, not attributed to the COVID-19 lockdown period itself. CONCLUSION: To our knowledge, this is the first report of identifying a subpopulation susceptible to closure of medical services during the COVID-19 pandemic and diagnostic delay of specific kidney diseases. Therefore, the COVID-19 pandemic should be regarded as a risk factor especially in patients with diseases other than COVID-19 primarily admitted to the normal medical ward.

18.
Front Med (Lausanne) ; 8: 644715, 2021.
Article in English | MEDLINE | ID: covidwho-1266665

ABSTRACT

Background: Acute kidney injury (AKI) is very common in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease 2019 (COVID-19) and considered as a risk factor for COVID-19 severity. SARS-CoV-2 renal tropism has been observed in COVID-19 patients, suggesting that direct viral injury of the kidneys may contribute to AKI. We examined 20 adult cases with confirmed SARS-CoV-2 infection requiring ICU supportive care in a single-center prospective observational study and investigated whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Objectives: The objective of the study was to evaluate whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Results: Urinary SARS-CoV-2 N measured at ICU admission identified patients at risk for AKI in COVID-19 (HR 5.9, 95% CI 1.4-26, p = 0.0095). In addition, the combination of urinary SARS-CoV-2 N and plasma albumin measurements further improved the association with AKI (HR 11.4, 95% CI 2.7-48, p = 0.0016). Finally, combining urinary SARS-CoV-2 N and plasma albumin measurements associated with the length of ICU supportive care (HR 3.3, 95% CI 1.1-9.9, p = 0.0273) and premature death (HR 7.6, 95% CI 1.3-44, p = 0.0240). In contrast, urinary ACE2 and TMPRSS2 did not correlate with AKI in COVID-19. Conclusions: In conclusion, urinary SARS-CoV-2 N levels associate with risk for AKI and correlate with COVID-19 severity.

19.
Nat Neurosci ; 24(2): 168-175, 2021 02.
Article in English | MEDLINE | ID: covidwho-1060446

ABSTRACT

The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.


Subject(s)
Brain/virology , COVID-19/virology , Olfactory Mucosa/virology , SARS-CoV-2/pathogenicity , Central Nervous System , Humans , RNA, Viral/genetics , Smell/physiology , Virus Internalization
20.
Crit Care Explor ; 2(11): e0284, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-939585

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 cell entry depends on angiotensin-converting enzyme 2 and transmembrane serine protease 2 and is blocked in cell culture by camostat mesylate, a clinically proven protease inhibitor. Whether camostat mesylate is able to lower disease burden in coronavirus disease 2019 sepsis is currently unknown. DESIGN: Retrospective observational case series. SETTING: Patient treated in ICU of University hospital Göttingen, Germany. PATIENTS: Eleven critical ill coronavirus disease 2019 patients with organ failure were treated in ICU. INTERVENTIONS: Compassionate use of camostat mesylate (six patients, camostat group) or hydroxychloroquine (five patients, hydroxychloroquine group). MEASUREMENTS AND MAIN RESULTS: Clinical courses were assessed by Sepsis-related Organ Failure Assessment score at days 1, 3, and 8. Further, viral load, oxygenation, and inflammatory markers were determined. Sepsis-related Organ Failure Assessment score was comparable between camostat and hydroxychloroquine groups upon ICU admission. During observation, the Sepsis-related Organ Failure Assessment score decreased in the camostat group but remained elevated in the hydroxychloroquine group. The decline in disease severity in camostat mesylate treated patients was paralleled by a decline in inflammatory markers and improvement of oxygenation. CONCLUSIONS: The severity of coronavirus disease 2019 decreased upon camostat mesylate treatment within a period of 8 days and a similar effect was not observed in patients receiving hydroxychloroquine. Camostat mesylate thus warrants further evaluation within randomized clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL